

Where is PHAROS from?

 Focal-plane Array for Radio Astronomy, Desig, Acces and Yeld. FARADAY (EC FP5, K-band, 7 beams)

Phased Array for Reflector Observing Systems. PHAROS (EC FP6, C-band, 4 e-beams)

O

INTRODUCTION

INAF

The challange: Large windows

The challange: Large windows

Pharos		
Volume	110	
	Liters	
External Suface	1,30 m ²	
Shield Surface	0,90 m ²	
Window Surface	2100 cm ²	

INAF

INTRODUCTION

HEAT LOADS

WINDOW

ANTENNA LOGISTICS

CONCLUSIONS

HEAT LOADS – 2° stage

- through coax cables
- through DC wires
- LNA

•

INAF

- through window
 - Coax UT85 SS: 8.4 mW /meter (20K...300K) 1.0 mW /meter (20K...70K)

UT85SS 20K...70 K Heat for 1 mt NOW 13 mW COMPLETE 220 mW

- AWG34 Phosphor bronze: 5 mW / meter i.e. 20 x AWG34, 1 mt long, carry 100 mW
- Traditional LNA (Te=2K, G=40dB, Po₁=+5dBm): 40 mW LNF LNA (Te=2K, G=40dB, Po₁=-10dBm): 4 mW i.e. 110 x LNF LNA: 440 mW

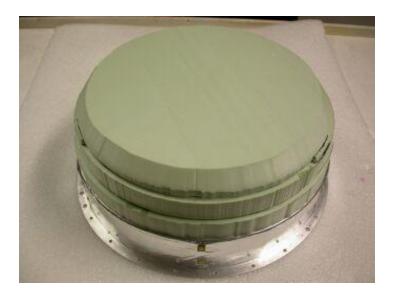
HEAT FLOW THROUGH WINDOW

- Due to black body radiation law, if black surfaces, 300K-20K: 45 W
- But Vivaldi array is shiny metal, realistically, ≈ 5...10 W. Anyway IR filter is required.

HEAT LOADS

INTRODUCTION

WINDOW


ANTENNA LOGISTICS

CONCLUSIONS

- Candidate materials has been tested extensively by experimental research. It required months.
- An ad hoc cryo test bench has been built.
 It was a "composite bolometer" cooled by CTI350.
 Accurate thermometers has been used to measure both temperatures.
 Resistors and black smoked surfeces has been used to calibrate the bolometer

HEAT FLOW THROUGH WINDOW

	-							
	No.	Materiali		ΔT	P	$\eta = P/P_0$		
		80 K	20 K	(K)	(mW)	(%)		
	Bolometro A							
	1^{1}	-	-	10.4	237.6	100.		
	2^{2}	-	-	5.80	129.7	54.6		
	3	PP2	-	4.30	94.58	39.8		
	4	BP	-	5.00	110.9	46.7		
	5	BP + PP2	-	4.00	87.54	36.8		
	6	PP2 + BP	-	4.00	87.54	36.8		
	7	STY	-	3.20	68.79	28.9		
DUCTION	8	HF71	-	4.20	92.23	38.8		
JUCTION	9	"	PP4	2.70	57.06	24.0		
	10	STY	"	1.28	23.76	10.0		
	11	HF71 + 51 + 31	"	1.17	21.19	8.9		
TLOADS	12	4x PP2	"	1.04	18.14	7.6		
188888888888	Bolometro B							
	14	STY+BP1	PP4+BP1	2.00	10.56	4.4		
	15	COMP+BP1	"	2.54	13.67	5.7		
INDOW	16	STY+BCB	"	1.22	6.08	2.5		
	17	"	PP4	3.47	19.02	8.0		
	18	STY	PP4+BCB	1.34	6.77	2.8		
TENNA	19	2xPP2+BP1+2xPP2	PP4	2.28	12.17	5.1		
GISTICS	20	BCB	-	12.3	69.78	29.		
GISTICS	21	2x(PP4+BP1)	PP4+BP1	2.50	13.44	5.6		
	22	2x(PP2+BP1)+PP2	PP4	2.00	10.56	4.4		
	23	"	PP4+BP1	1.35	6.83	2.8		
CLUSIONS	24	KLE 130	PP4	5.90	32.99	13.8		

withou	t IR Filter :		510	W
with	IR Filter	•	0.14	.0.28₩

CONCLUSIONS

INTRO

HEA

WI

Wafers of foam PP2 and a black thin polietilene sheet was applied to second stage (20K) and first stage (70K).

Heat flow has been reduced to the 2.8% of the non filtered situation, so the estimate residual flux is $\approx 0.14...028$ W, say less than 0.3W.

INAF

The WINDOW

Requirements:

- Resist to the weigh of air pressure, 2000 Kg
- Transparent to RF

HEAT LOADS

INTRODUCTION

WINDOW

ANTENNA LOGISTICS

CONCLUSIONS

INAF

Preceding experience (Faraday) : thin film surrounded by thick foam. Air weigh ≈500 Kg. Rreinforcing ribs needed. But PHAROS requires no ribs nor spokes. Another solution needed.

Half sphere appeared the most functional and elegant solution because:

- Strongest shape to air pressure
- Invariant thickness vs any EM radiation direction
- Do not shadow the pattern of wide angle feed.

The WINDOW

•Which material?

INTRODUCTION

HEAT LOADS

WINDOW

ANTENNA

LOGISTICS

CONCLUSIONS

INAF

The ideal window is made by a low reflection material ($\varepsilon_r \approx 1.0xx$ and thickness << λ), low loss material (tan $\delta < 1E-3$), strong enough to carry 2000Kg, moldable as half sphere.

This material has been looked for but not found.

Some plastic has been considered: Plexiglass (chem: PMMA) and Policarbonate (chem: PC), both moldable.

The Plexiglass shown apparently more robust, easier to mold, easier to find on the market and lower tan δ .

Given the big air pressure weight, the minimum thickness has been evaluated.

The thickness has been chosen in order to satisfy 2 criteria:

- thickness greater than the safety minimum
- thickness = $\lambda/2$ at center frequency in order to minimize reflections.

The resulting thickness is 16 mm.

<u>The WINDOW</u>

WINDOW

ANTENNA LOGISTICS

INAF

INSIDE THE CRYOSTAT

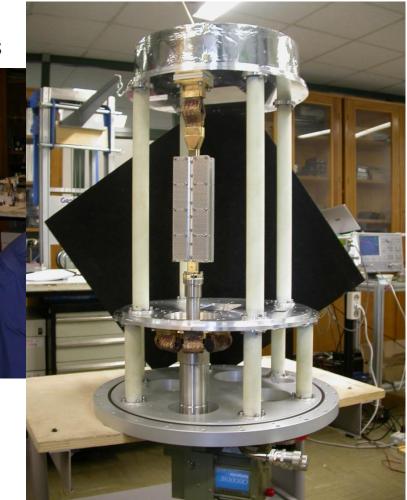
Six G-10 barrel support the cold plates.

Activate charcoal trap May type of different thermal contacts has been tryed

INTRODUCTION

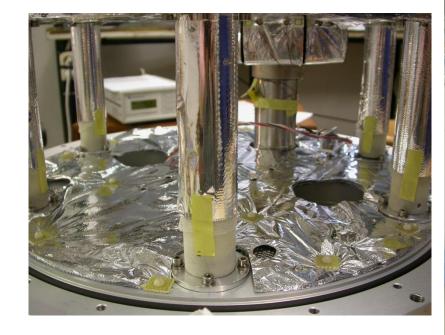
HEAT LOADS

WINDOW


ANTENNA

LOGISTICS

CONCLUSIONS

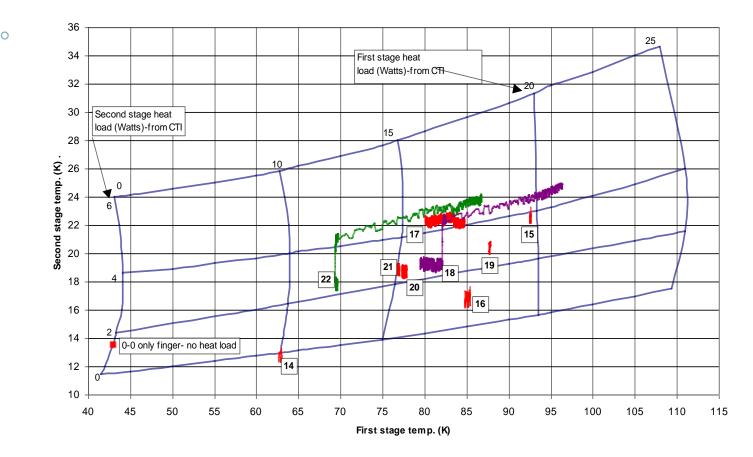

INAF

T3: 19.88K T5: 19.84K T4: 21.90K T6: 78.57K T7: 72.01K T2: 17.83K T1: 69.58K

SUPER-INSULATION

Melius abundare quam deficere (the more is better)

INTRODUCTION


HEAT LOADS

WINDOW

ANTENNA LOGISTICS

CONCLUSIONS

HEAT LOAD VERIFICATION

Actual temperatures are overlapped on the standard cryo-capability graphic

INAF

INTRODUCTION

HEAT LOADS

WINDOW

ANTENNA

LOGISTICS

CONCLUSIONS

The SIZE of CRYOCOOLER

BRANDS	
Formerly CTI- Cryogenics most sold	Sumitomo best selling
COMPRESSORS	
6 KW (40 SCFM)	2 KW (14 SCFM)
<i>May drive:</i> One 12W cryocooler Three 4W cryocooler	May drive: One 4W cryocooler
∆pressure: I 70 psi	∆pressure: I 25 psi

Higher is the Δ pressure, Higher is the cooling capability .

But the Δ pressure is reduced by pressure drop along pipelines.

PHASED ARRAY FEED WORKSHOP - Cagliari, August 24-26th 2016

INTRODUCTION

HEAT LOADS

WINDOW

ANTENNA LOGISTICS

CONCLUSIONS

The ROLE of the ANTENNA

- Does the choose of cryocooler size is a matter related to the PAF receiver only?
- Or conversely is it a trade off between receiver design and logistic antenna capability?
- We think the latter.

INTRODUCTIO

HEAT LOADS

WINDOW

ΔΝΤΕΝΝΔ

LOGISTICS

CONCLUSIONS

INAF

- In SRT, 100 mt long pipelines has been designed in order to get a negligible pressure drop even with He flow as high as 40 SCFM (6KW sized compressor).
- The use of 12W cryocooler is allowed, but it would waste the whole available He flux. For this reason a 4W cryocooler has been used even if it is little overloaded.

CONCLUSIONS

O

INTRODUCTION

HEAT LOADS

WINDOW

ANTENNA

CONCLUSIONS

INAF

- The PHAROS cryostat has been build and it's operative since Y 2008. Now at JBO.
- The most cryogenic challenging difficulty was the window as large as 37 cm.
- The dome is plexiglass made, 16 mm thick, vacuum resistant, RF transparent half sphere.
- Heat flowing along RF path has been minimized by use of a wafer of foam sheets
- Heat flowing through metal shields has been minimized by extensive use of superinsulation blankets.

CONCLUSIONS

0

INTRODUCTION

HEAT LOADS

WINDOW

ANTENNA LOGISTICS

CONCLUSIONS

INAF